Neuromuscular Efficiency and Elbow Varus Torque Production in
Baseball Pitchers: A Two-Tier Machine Learning Approach Integrating

Electromyography and Biomechanical Analysis



Neuromuscular Efficiency and Elbow Varus Torque Production in Baseball
Pitchers: A Two-Tier Machine Learning Approach Integrating Electromyography

and Biomechanical Analysis

Elbow varus torque represents the primary mechanical load associated with ulnar
collateral ligament injury in baseball pitchers. Although biomechanical models predict
torque from kinematics and anthropometrics, athletes with similar movement patterns
demonstrate substantial variance in torque production and injury susceptibility,
suggesting that unmeasured neuromuscular factors contribute to joint loading. This
study developed and validated a two-tier machine learning framework to quantify the
independent contribution of forearm muscle activation patterns to elbow varus torque
beyond predictions achievable through biomechanical kinematics alone. A hierarchical
modelling approach analysed 20,323 pitching trials from motion capture systems. Stage
1 employed gradient boosted decision trees to predict torque from anthropometric and
kinematic features, establishing a biomechanical baseline (R? = 0.764, RMSE = 18.55
Nm). Stage 2 modelled residuals from Stage 1 using surface electromyography of the
flexor carpi radialis and flexor carpi ulnaris muscles, combined with Flex Pro Grip
isometric performance metrics, in 581 trials with complete neuromuscular data. Novel
electromyography-to-performance ratio features were engineered to capture relative
muscle activation efficiency. Stage 2 explained approximately 30% of residual variance
(R2=0.298-0.316, RMSE = 16.44 Nm). Frequency-domain and efficiency ratio
features demonstrated superior predictive power over raw amplitude measures.
Forearm muscle activation patterns explain clinically meaningful variance in elbow
torque production beyond biomechanical kinematics, supporting a neuromuscular
efficiency construct that may inform personalised injury risk stratification and training

interventions.
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1. Introduction

1.1. Clinical Context and Epidemiological Burden

Ulnar collateral ligament (UCL) injuries represent one of the most prevalent and career-
threatening conditions affecting baseball pitchers, with UCL reconstruction surgery (also
known as 'Tommy John surgery") rates continuing to increase at both professional and youth
levels (Erickson et al., 2015; Keri et al., 2018). Elbow varus torque, defined as the frontal
plane moment tending to open the medial elbow joint, constitutes the primary mechanical

load experienced by the UCL during the throwing motion.

[Figure 1 near here]

Peak varus torque values range from 40 to 120 Newton-meters (Nm) during high-velocity
pitching, with magnitudes approaching or exceeding the estimated failure load of the native
UCL in elite athletes (Fleisig et al., 1995; Escamilla et al., 2007). Despite advances in motion
capture technology enabling precise quantification of joint loading through inverse dynamics
calculations, two fundamental questions remain not fully answered. First, why do athletes
with similar kinematic profiles demonstrate substantial individual variance in torque
production? Second, what physiological mechanisms explain why some pitchers tolerate high
torque loads without injury while others develop UCL pathology at comparatively lower
loading magnitudes? These questions suggest that factors beyond observable kinematics may

influence joint loading and injury risk.

1.2. Limitations of Kinematic-Based Torque Prediction

Contemporary biomechanical models predict elbow varus torque from observable kinematics,
including joint angles, angular velocities, and segment accelerations, combined with

anthropometric parameters such as body mass, limb segment lengths, and estimated segment



masses (Aguinaldo & Chambers, 2009; Anz et al., 2010). These models consistently explain
70% to 80% of torque variance across diverse pitcher populations (Whiteside et al., 2016),
demonstrating that movement patterns represent the primary determinants of joint loading.
The remaining 20% to 30% of unexplained variance is often attributed to measurement error
or individual biological variations, however, this has not been completely confirmed. The
central nervous system faces what Bernstein (1967) termed the 'degrees of freedom problem’
during multi-joint movements: infinite combinations of muscle activation patterns can
produce identical kinematics. This implies that two pitchers executing identical joint
trajectories may employ fundamentally different muscle recruitment strategies, potentially
resulting in different joint loading patterns despite kinematic similarity. Electromyographic
studies in overhead athletes have demonstrated substantial variability in muscle activation
timing, magnitude, and coactivation patterns despite similar task performance across athletes
(Escamilla et al., 2017; Seroyer et al., 2019). However, most EMG research in pitching has
focused on shoulder musculature, with limited investigation of forearm muscles despite their

anatomical proximity and mechanical coupling to the medial elbow complex.

1.3. Neuromuscular Control and the Flexor-Pronator Mass

The flexor-pronator muscle mass, particularly the flexor carpi radialis (FCR) and flexor carpi
ulnaris (FCU), originates from the medial epicondyle of the humerus in close anatomical
relationship to the UCL (DiGiovine et al., 1992). Beyond their primary roles in wrist flexion
and radial or ulnar deviation, these muscles contribute to dynamic joint stability through
compressive loading across the elbow joint, therefore modulating valgus stress experienced
by the UCL (Davidson et al., 1995; Park & Ahmad, 2004). Biomechanical modeling studies
suggest that appropriate flexor-pronator muscle activation could reduce UCL strain by 10%

to 15% through increased joint compression and altered force distribution (Davidson et al.,



1995). Recent theoretical work proposes that optimal forearm muscle coordination serves a
protective function by reducing reliance on passive ligamentous restraint, while inefficient or
compensatory activation patterns may increase injury risk through multiple pathways
(Watson et al., 2020; Andrews & Wilk, 2021). These pathways include increased metabolic
demand leading to premature fatigue, altered joint mechanics affecting stress distribution, and
chronic overload of the common flexor tendon insertion. However, direct evidence linking

muscle activation patterns to joint loading beyond what kinematics predict remains limited.

1.4. The Neuromuscular Efficiency Hypothesis

This study proposes a neuromuscular efficiency framework to explain residual torque
variance: athletes who produce less-than-expected torque for their observed kinematics
demonstrate efficient muscle activation patterns that minimise unnecessary co-contraction
and optimise force transfer, while those exceeding kinematic predictions exhibit
compensatory strategies requiring excessive muscle effort for equivalent performance
outcomes. This hypothesis grounds itself in the motor control concept of ‘'motor abundance'
(Latash, 2012), which posits that skilled performers exploit the redundant solution space to
minimise metabolic cost, fatigue accumulation, and tissue stress. Critically, this efficiency
construct cannot be assessed through kinematics alone, as observable movement trajectories
represent only the kinematic output of underlying neuromuscular processes. Surface
electromyography provides the necessary window into these underlying neuromuscular

strategies.

1.5. Rationale for Hierarchical Two-Tier Modeling

Traditional single-stage regression approaches combining biomechanical and EMG features
suffer from a fundamental statistical problem: dominant kinematic predictors (e.g., peak

shoulder internal rotation velocity, elbow flexion angle at ball release) explain such large



proportions of variance that EMG features contribute minimally to model fit, often resulting
in their exclusion during feature selection or assignment of negligible importance weights.
This statistical dominance does not imply that EMG features lack physiological importance.
Rather, |their contribution becomes masked because of the overwhelming kinematic signal. A
hierarchical two-tier architecture addresses this limitation by explicitly separating the
modeling task into two stages. Stage 1 captures the primary kinematic-anthropometric signal,
establishing what an athlete should produce given their physical attributes and observed
movement patterns, functioning as a 'forearm muscle-agnostic' prediction. Stage 2 then
models deviations from this expectation using neuromuscular features, thereby isolating the
component of torque production attributable to muscle coordination efficiency. This
architecture ensures that EMG features are evaluated based on their ability to explain
variance that kinematic and anthropometric data fundamentally cannot capture, providing a
fair test of the neuromuscular efficiency hypothesis. This approach parallels ‘above expected’
modelling frameworks common in sports analytics (e.g., predicting home run rates above
expectation based on batted ball characteristics) and Ihas precedent in biomechanical
modeling where hierarchical structures isolate specific variance components (Bates et al.,

2020).

1.6. Integration of Isometric Performance Assessment

An additional innovation involves integrating Flex Pro Grip (FPG) data which is a
commercial force plate system quantifying isometric wrist flexion strength, power, and
control during standardised rapid flexion protocols. The hypothesis posits that FPG metrics
serve as neuromuscular efficiency proxies: athletes demonstrating high performance
(velocity, force production) relative to their muscle activation during isometric tasks likely

exhibit similar efficiency during dynamic throwing. Conversely, high EMG activation



producing modest FPG performance suggests inefficient recruitment strategies. Importantly,
if FPG metrics alone approximate torque residuals without requiring EMG, this would
represent a major practical advance, as FPG testing requires substantially less technical
expertise, time investment, and signal processing compared to multi-channel EMG. The role
of EMG in this framework is therefore threefold: establishing mechanistic plausibility that
neuromuscular patterns explain residual variance, validating FPG as a meaningful
performance metric capturing relevant aspects of muscle function, and potentially being
replaced by FPG in operationalised clinical workflows once the EMG-FPG-torque

relationship is sufficiently characterised.

1.7. Study Objectives and Hypotheses

This study aimed to (a) develop and validate a baseline biomechanical model predicting
elbow varus torque from anthropometric and kinematic features alone, (b) quantify the
independent contribution of forearm muscle EMG patterns to explaining residual torque
variance beyond kinematic predictions, (c) identify optimal EMG feature representations
(time-domain, frequency-domain, wavelet-based) for predicting neuromuscular efficiency,
(d) engineer and test novel EMG-to-performance ratio features designed to isolate relative
activation efficiency, and (e) assess the feasibility of FPG metrics as a practical proxy for
EMG-derived neuromuscular efficiency measures. We hypothesized that (H1) a
biomechanical model would explain approximately 70% to 80% of torque variance,
consistent with prior literature; (H2) EMG features would explain a meaningful proportion
(greater than 15%) of residual variance, supporting the neuromuscular efficiency construct;
(H3) frequency-domain and efficiency ratio features would outperform raw amplitude
measures by capturing coordination quality rather than merely quantifying activation

magnitude; and (H4) FPG-normalised EMG features would demonstrate superior predictive



performance by accounting for individual differences in maximal force-generating capacity.

2. Materials and Methods

2.1. Study Design and Ethical Considerations

This study analysed biomechanical and neuromuscular data collected during routine athlete
assessments at athletic training facilities between 2020 and 2025. All participants provided
written informed consent for data collection and de-identified analysis as part of standard
training services. The study was conducted in accordance with the Declaration of Helsinki.
As data were collected as part of normal athletic assessment rather than for a priori research
purposes, formal institutional review board review was not required. However, all procedures

adhered to ethical standards for retrospective analysis of de-identified performance data.

2.2. Participants

The dataset comprised 20,323 pitching trials from 4,847 unique athletes (age range: 13-34
years, mean * standard deviation: 18.2 + 3.7 years). Inclusion criteria required completion of
full-body motion capture assessment including anthropometric measurements and successful
calculation of elbow varus torque via inverse dynamics. Athletes with incomplete kinematic
data, failed motion capture trials (marker dropout exceeding 5% of trial duration), or age less
than 13 years were excluded to focus on post-pubertal populations where UCL injury risk is
clinically relevant. The dataset included pitchers across competitive levels from high school
to professional, with pitch velocities ranging from 62 to 104 mph (mean: 81.3 + 8.9 mph). A
subset of 581 pitching trials from 94 unique athletes had complete paired data including
biomechanical motion capture, surface EMG recordings, and Flex Pro Grip assessments
conducted within the same testing session. This subset represented athletes who underwent

comprehensive neuromuscular evaluation between May 2024 and September 2025 as part of



targeted research data collection initiatives. Demographic characteristics of the EMG subset
were similar to the full cohort (age: 18.5 + 3.2 years, velocity: 82.1 + 9.3 mph), with no

systematic differences in kinematic profiles, suggesting representative sampling.

2.3. Data Collection Procedures

2.3.1. Motion Capture and Biomechanical Analysis

Three-dimensional kinematics were captured using a markerless motion capture system
(Theia Markerless, Theia Markerless Inc., Kingston, Ontario, Canada) consisting of 6 to 8
Edgertronic cameras (SC1 Color 16GB, Sanstreak Corp., Campbell, California, USA)
sampling at 300Hz positioned around the pitching area. Athletes performed standardised
warm-up routines followed by six to ten maximal-effort fastball pitches from a full windup
on an indoor mound. Post-processing was done via Visual 3D (HAS Motion, Kingston,
Ontario, Canada) to calculate kinematic and inverse dynamic data points. Kinematic data
were processed using custom biomechanical modeling pipelines with segment mass
estimation based on subject-specific anthropometric measurements (height and body mass).
Joint centers were calculated using anatomical landmark-based definitions for the shoulder,
elbow, and wrist. Joint angles were computed using Cardan angle sequences specific to each
joint (shoulder: Z-Y-Z; elbow and wrist: X-Y-Z) representing flexion-extension, abduction-
adduction, and internal-external rotation. Inverse dynamics calculations employed a
Newtonian approach, computing net joint moments and forces from segment kinematics,
estimated segment masses, and segment angular velocities. EIbow varus torque was defined
as the frontal plane moment about the elbow joint center during the arm-cocking and
acceleration phases of pitching, with peak varus torque identified as the maximum value

occurring between maximum shoulder external rotation and ball release.



2.3.2. Electromyography

Surface EMG was recorded from the flexor carpi radialis (FCR) and flexor carpi ulnaris
(FCU) of the throwing arm using a wireless EMG system (Delsys Trigno Avanti, Delsys Inc.,
Natick, Massachusetts). The FCR and FCU were selected based on their anatomical origin at
the medial epicondyle, established role in dynamic elbow stabilisation, and accessibility for

reliable surface electrode placement (DiGiovine et al., 1992).

[Figure 2 near here]

Electrodes were positioned according to Surface Electromyography for the Non-Invasive
Assessment of Muscles (SENIAM) guidelines (Hermens et al., 2000) following anatomical
palpation protocols. For FCR: approximately one-third of the distance from the medial
epicondyle to the radial styloid, identified via manual palpation during resisted wrist flexion
with radial deviation. For FCU: medial forearm, approximately one-quarter distance from
medial epicondyle to pisiform, identified during resisted wrist flexion with ulnar deviation.
Electrode orientation followed muscle fiber direction (sensor arrow pointing distally toward
the hand). Skin preparation included shaving (if necessary) and cleaning with isopropyl
alcohol to reduce impedance below 5 kilo-ohms. Electrodes were secured using double-sided
adhesive interfaces (Delsys Adhesive Sensors) and reinforced with elastic athletic tape and
compression sleeves to minimise movement artifact during high-velocity throwing. Wireless
sensors (Trigno Avanti, 1926 Hz sampling frequency, 20-450 Hz bandwidth, baseline noise
less than 0.75 microvolts root-mean-square) were paired to a local base station and
synchronized with motion capture during post-processing. Following a standardised warm-
up, athletes underwent (a) EMG sensor application (approximately 5 minutes), (b) motion
capture session with EMG recording (five to eight pitches, approximately 10 minutes), (c)

immediate transition to Flex Pro Grip testing with EMG sensors still applied (3-5 minutes),



and (d) sensor removal. This sequence ensured thermal stability of electrodes, consistent
muscle activation state across modalities, and minimised total time burden while maintaining

signal quality.

2.3.3. Maximal Voluntary Isometric Contraction Normalization

Isometric wrist flexion performance was assessed using the Flex Pro Grip system (Flex Pro
Grip, Version 2.\0D, a force plate apparatus quantifying finger pressure distribution, total
force, and rapid flexion dynamics. Athletes performed the standardised 'Rapid Flexion Test'
protocol: forearm stabilized on padded support with wrist in neutral position, fingers
positioned on calibrated pressure sensors, and instructed to 'explosively flex fingers as hard
and fast as possible’ on verbal cue. Metrics extracted included expected velocity (peak rate of
force development during rapid flexion phase), scored velocity (performance-weighted
velocity metric incorporating force magnitude and temporal consistency), mid-finger points
(weighted and actual, representing composite score of middle three fingers' contribution), and
flexion points (weighted and actual, representing aggregate performance score across all
fingers). FPG assessments were conducted immediately following motion capture trials while
EMG sensors remained applied, enabling direct comparison of neuromuscular activation
patterns during dynamic (throwing) versus isometric (FPG) tasks.

[Figure 3 near here]

2.4. EMG Signal Processing

2.4.1. Raw Signal Processing

EMG data were processed using custom Python scripts implementing standard signal
processing workflows: (a) band-pass filtering using a fourth-order Butterworth filter (20—450

Hz, zero-phase via forward-backward filtering), (b) artifact detection and rejection through



visual inspection and automated threshold-based removal of trials with sustained clipping or
saturation (signal exceeding 90% of maximum analog-to-digital converter range for more
than 50 milliseconds), movement artifacts (instantaneous amplitude exceeding five times
baseline variability), or electromagnetic interference (50/60 Hz noise exceeding —40 dB
signal-to-noise ratio), and (c) trial segmentation via manually labeled EMG epochs
corresponding to trials based on motion capture event timestamps and signal recognition.
EMG features were extracted primarily from the acceleration phase (50-80 milliseconds
duration), where peak elbow varus torque occurs and FCR and FCU demonstrate maximal
activation (Escamilla et al., 2017).

[Figure 4 near here]

2.4.2. Feature Extraction: Time Domain

Time-domain features quantified raw signal magnitude and temporal characteristics. Root-
mean-square (RMS) reflected average muscle activation intensity, calculated as the square
root of the mean of squared amplitude values. Peak amplitude represented the maximum
rectified EMG amplitude during the phase. Throw integral quantified total EMG activity
(area under rectified curve), representing cumulative muscle effort. Rise time indexed
activation speed, measured as time from 10% to 90% of peak activation. All amplitude

features were additionally expressed normalised by MVIC reference values (%MVIC).

2.4.3. Feature Extraction: Frequency Domain

Frequency-domain features captured muscle fiber recruitment patterns, fatigue state, and
signal complexity. Median frequency (MDF) represented the frequency dividing the power
spectrum into two equal halves and is sensitive to muscle fatigue, shifting lower with fatigue
accumulation. Mean frequency (MNF) represented the centroid of the power spectrum,

reflecting average muscle fiber conduction velocity. Bandwidth quantified the frequency



range containing 95% of signal power, indicating recruitment breadth. Spectral entropy
calculated Shannon entropy of the normalised power spectrum, quantifying signal complexity
or randomness, with higher entropy suggesting more variable activation patterns. Power
spectral density estimation employed Welch's method with 1024-point fast Fourier transform,

50% Hanning window overlap, and frequency resolution of 1.88 Hz.

2.4.4. Feature Extraction: Wavelet Transform

Wavelet analysis provided time-frequency localisation, capturing transient activation
dynamics. Discrete wavelet transform employed a Daubechies-4 (db4) mother wavelet with
five-level decomposition. Energy in frequency bands was calculated as the sum of squared
wavelet coefficients in specified bands: low band (12.5-25 Hz, reflecting slow motor units
and sustained contractions), mid band (25-100 Hz, representing mixed recruitment), and high
band (100-450 Hz, indicating fast motor units and rapid force production). Wavelet features
captured non-stationary components of EMG that Fourier-based methods may miss,

particularly useful for explosive movements like pitching.

2.4.5. Coactivation Features

Coactivation indices quantified simultaneous activation of FCR and FCU, reflecting
antagonist coordination. Temporal overlap represented the percentage of phase duration
where both muscles exceeded an activation threshold (greater than 20% MVIC). Cross-
correlation calculated the maximum correlation coefficient of FCR and FCU time series
across a lag range (50 milliseconds). Coactivation index was computed as twice the
minimum of FCR and FCU RMS divided by their sum, with values approaching 1.0
indicating balanced coactivation and values near 0.0 indicating single-muscle dominance.

[Figure 5 near here]



2.5. Novel Feature Engineering: EMG-to-Performance Ratios

Beyond standard time-domain, frequency-domain, and wavelet-derived EMG features, novel
engineered features were developed to operationalise the neuromuscular efficiency construct
central to this study's theoretical framework. These engineered features quantify muscle
activation patterns relative to functional performance outcomes, thereby capturing
coordination quality rather than merely activation magnitude. Thirty-six cross-modal ratio
features were constructed by dividing each of four MVIC-normalised EMG metrics (FCU
MVIC peak amplitude, FCU MVIC RMS, FCR MVIC peak amplitude, FCR MVIC RMS) by
each of nine Flex Pro Grip performance metrics (expected velocity, scored velocity, mid-
finger points weighted and actual, flexion points weighted and actual, and additional FPG
composite scores). For example, one such feature is defined as FCU MVIC peak amplitude
divided by FPG expected velocity. The rationale underlying these ratios posits that athletes
demonstrating high isometric force performance (high FPG metrics) with relatively low
muscle activation (low EMG amplitude) exhibit efficient neuromuscular coordination,
whereas those requiring high activation to achieve modest performance demonstrate
inefficient or compensatory recruitment strategies. These features test whether activation
efficiency during standardised isometric tasks predicts torque residuals during dynamic
throwing. Two additional ratio features quantified the relative balance of activation between
the flexor carpi ulnaris and flexor carpi radialis; FCU MVIC peak divided by FCR MVIC
peak, and FCU MVIC RMS divided by FCR MVIC RMS. These ratios capture whether
athletes rely disproportionately on one muscle versus balanced co-activation, with extreme
ratios potentially indicating compensatory patterns or muscular imbalances. Balanced ratios
(values near 1.0) suggest coordinated synergistic activation, while skewed ratios may reflect
preferential recruitment strategies. These 38 engineered features (36 EMG-to-FPG ratios plus

2 FCU-to-FCR ratios), combined with 13 standard EMG features and 9 FPG metrics, yielded



a total candidate feature pool of roughly 60 neuromuscular and performance features for
Stage 2 modeling. Feature selection procedures identified the optimal subset for residual

prediction.

2.6. Statistical Analysis and Machine Learning

2.6.1. Stage 1: Biomechanical Baseline Model

The objective was to predict elbow varus torque from anthropometric and kinematic features,
establishing maximum performance achievable without neuromuscular data. Twenty-two
features were included: six anthropometric features (height, body mass, upper arm length,
forearm length, hand length, and segment weight ratios calculated as forearm mass divided
by body mass) and 16 kinematic features (peak shoulder external rotation angle, peak
shoulder internal rotation velocity, elbow flexion angle at key events including foot contact,
maximum external rotation, and ball release, peak elbow extension velocity, peak wrist
flexion and extension angle, arm slot defined as shoulder abduction at release, trunk rotation
velocity, pelvis-trunk separation angle, and lead leg ground contact metrics including stride
length and foot contact velocity). XGBoost Regressor (Chen & Guestrin, 2016), a gradient
boosted decision tree ensemble optimised for regression, was selected for its superior
handling of non-linear feature interactions, built-in regularisation preventing overfitting,
robustness to feature scaling and missing data, efficient computational performance, and
interpretable feature importance metrics. Default hyperparameters (n_estimators = 100,
learning_rate = 0.3, max_depth = 6, subsample = 1.0, colsample_bytree = 1.0) were retained
for Stage 1, as pilot testing demonstrated minimal performance improvement with extensive
tuning, suggesting that data quality and feature engineering were more limiting factors than
model capacity. Sequential forward floating selection (SFFS; Pudil et al., 1994) was applied

to identify the optimal subset of kinematic features maximizing cross-validated R2. SFFS



iteratively adds features producing the largest performance gain and removes features causing
performance loss. Five-fold session-based GroupKFold was implemented to prevent data
leakage. The grouping variable was session identification (unique identifier for each athlete
testing date). The rationale recognizes that trials within the same session are not independent,
sharing the same athlete, day, similar fatigue state, and correlated measurement error.
Splitting by session ensures that no data from the same session appears in both training and
testing folds. Fold balance was stratified by number of sessions (not trials) to ensure
approximately equal numbers of athletes per fold. Validation metrics included mean R2 and
root-mean-square error (RMSE) across folds. Stage 1 generated (a) predicted elbow varus
torque for each trial, (b) residuals calculated as actual torque minus predicted torque, and (c)

feature importance rankings. These residuals became the target variable for Stage 2.

2.6.2. Stage 2: EMG Residual Prediction Model

The objective of Stage 2 was to predict residual elbow varus torque unexplained by Stage 1
biomechanical modeling using neuromuscular activation patterns and isometric performance
metrics. By targeting residuals rather than raw torque values, this stage isolated variance
attributable to muscle coordination efficiency and force application strategies independent of
kinematic determinants. This hierarchical design prevents EMG features from being
statistically overshadowed by dominant kinematic predictors, enabling a fair test of whether
neuromuscular factors systematically contribute to joint loading beyond mechanical
constraints. Fifty-one candidate features were extracted from surface EMG recordings and
Flex Pro Grip assessments conducted during the same testing sessions as motion capture
trials. Feature categories included (a) time-domain EMG features quantifying activation
magnitude and temporal characteristics (RMS, peak amplitude, throw integral, rise time) for

FCU and FCR, normalised by MVIC; (b) frequency-domain features capturing muscle fiber



recruitment patterns and fatigue state (median frequency, mean frequency, bandwidth,
spectral entropy); (c) wavelet-derived features providing time-frequency localisation of
transient activation dynamics (energy in low, mid, and high frequency bands); (d)
coactivation indices quantifying temporal overlap and cross-correlation between FCU and
FCR; (e) nine Flex Pro Grip metrics assessing isometric wrist flexion force, velocity, and
finger pressure distribution; and (f) 38 engineered ratio features operationalizing
neuromuscular efficiency (36 EMG-to-FPG ratios and 2 FCU-to-FCR balance ratios, as
detailed in Section 3.5). The complete feature set is described in Sections 2.4 and 2.5. The
XGBoost gradient boosted decision tree algorithm was employed for Stage 2, maintaining
methodological consistency with Stage 1. Hyperparameters were retained at default values
(n_estimators = 100, learning_rate = 0.3, max_depth = 6, subsample = 1.0, colsample_bytree
=1.0) to minimise overfitting risk given the reduced sample size in Stage 2 (581 trials with
complete EMG data compared to 22,978 trials in Stage 1). XGBoost's built-in L1 and L2
regularisation provided additional protection against overfitting in this smaller dataset
context. The dependent variable for Stage 2 was the residual from Stage 1, defined as actual
elbow varus torque minus Stage 1 predicted torque for each trial. Residuals represent the
component of joint loading not explained by biomechanical features, hypothesized to reflect
neuromuscular coordination strategies, muscle activation efficiency, and individual
compensatory mechanisms. Identical to Stage 1, five-fold session-based GroupKFold cross-
validation was implemented to prevent data leakage from correlated trials within testing
sessions. All trials from the same athlete-date session were assigned to the same fold,
ensuring that model validation tested generalisation to entirely new throwing sessions rather
than merely new trials from previously-seen sessions. This conservative validation approach
provides realistic estimates of predictive performance for prospective athlete assessments.

Stage 2 modeling generated (a) predicted residual corrections for each trial, (b) feature



importance rankings identifying which neuromuscular and performance features most
strongly predicted torque deviations from kinematic expectations, and (c) performance
metrics quantifying the proportion of residual variance explained by EMG and FPG features.
Combined predictions (Stage 1 baseline plus Stage 2 residual correction) estimate total elbow

varus torque incorporating both biomechanical and neuromuscular determinants.

2.7. Data Quality and Preprocessing

Outlier handling applied z-score clipping to the target variable (elbow varus torque) at plus or
minus three standard deviations from the dataset mean to remove physiologically implausible
values likely resulting from inverse dynamics calculation errors or motion capture artifacts.
This procedure removed less than 2% of trials. Missing data exclusions removed trials with
more than 5% missing EMG data or incomplete FPG assessments from Stage 2 (though such
trials were retained in Stage 1 if kinematics were complete). Age filtering included only
athletes older than 12 years, as pre-adolescent biomechanics differ substantially and UCL
injury is rare below age 13. Minimum trial requirements excluded athletes with fewer than
three valid trials per session to enable meaningful within-session statistical feature

calculation.

3. Results

3.1. Stage 1: Biomechanical Baseline Model Performance

Stage 1 kinematic-anthropometric modeling achieved strong predictive performance across
the full dataset of 20,323 pitching trials. Five-fold session-based cross-validation yielded
mean R2 = 0.764, RMSE = 18.55 Nm, and correlation r = 0.874 between predicted and actual
torque values. This performance explains 76.4% of elbow varus torque variance using

kinematic and anthropometric features alone, consistent with literature benchmarks reported



in prior studies (typical Rz = 0.70-0.78; Fleisig et al., 1995; Whiteside et al., 2016). The
RMSE of 18.55 Nm represents acceptable prediction precision given the physiological range
of peak varus torque observed in baseball pitching (typical range: 40-120 Nm). Prediction
errors of this magnitude fall within the measurement uncertainty inherent to inverse dynamics
calculations and are consistent with error magnitudes reported for comparable biomechanical
modeling studies. XGBoost feature importance rankings, quantified using gain (the
improvement in prediction accuracy contributed by each feature across all decision tree
splits), identified kinematic velocity features as dominant predictors. Table 1 presents the top
15 features ranked by normalised importance scores. Peak shoulder internal rotation velocity
emerged as the single strongest predictor (importance = 0.187), consistent with
biomechanical theory emphasizing rapid shoulder rotation as the primary driver of elbow
varus loading during the acceleration phase (Fleisig et al., 1995). Peak elbow extension
velocity ranked second (importance = 0.142), reflecting the contribution of rapid forearm
extension to intersegmental forces experienced at the elbow joint.

[Figure 6 near here]

Collectively, the top 15 features accounted for 88.9% of the total feature importance,
with the remaining 15 features contributing 11.1%. Velocity features (shoulder internal
rotation velocity, elbow extension velocity, pelvis rotational velocity, torso rotational
velocity, lead knee extension velocity) represented 5 of the top 10 features and collectively
explained 49.9% of model importance, underscoring the primacy of rapid segmental
accelerations in generating joint loading. Anthropometric features (forearm length, body
mass, upper arm length) contributed 20.6% of total importance, reflecting their influence on
segmental inertia and lever arm mechanics in inverse dynamics calculations. Joint position
features at key pitching phases (foot plant, maximum external rotation) contributed 29.5% of

importance, capturing the postural configurations that constrain force transmission through



the kinetic chain. Residual Distribution and Bias Analysis. Residuals from Stage 1
predictions (actual torque minus predicted torque) demonstrated approximately normal
distribution with near-zero mean bias and standard deviation of 18.55 Nm (equal to RMSE).
The absence of systematic residual patterns suggests that the remaining 23.6% of unexplained
variance (100% — 76.4% = 23.6%) represents true individual variation not captured by
observable kinematics, providing appropriate signal for Stage 2 neuromuscular modeling.
Stage 1 performance (Rz = 0.764) aligns with previously reported benchmarks for kinematic
prediction of elbow varus torque. Fleisig et al. (1995) reported R2 = 0.72 using inverse
dynamics with smaller sample sizes (n = 26 pitchers). Whiteside et al. (2016) achieved R2 =
0.76 using regression models in collegiate pitchers (n = 95). The performance observed in
this study is consistent with these benchmarks while utilizing a substantially larger dataset
(20,323 trials), comprehensive feature engineering including 30 kinematic and
anthropometric features spanning multiple pitching phases and kinetic chain segments, and
machine learning methodology (gradient boosted decision trees) capable of modeling
complex non-linear relationships.

[Table 1 near here]

3.2. Stage 2: Neuromuscular Residual Prediction Model Performance

Stage 2 neuromuscular modeling, applied to the subset of 581 pitching trials with complete
EMG and Flex Pro Grip data from 55 testing sessions, successfully explained a meaningful
proportion of residual variance unexplained by Stage 1 biomechanical predictions. Five-fold
session-based cross-validation yielded mean R2 = 0.298 (standard deviation = 0.092) when
predicting Stage 1 residuals, with RMSE = 16.44 Nm and MAE = 12.06 Nm. Pooled
predictions across all cross-validation folds achieved R2 = 0.316, indicating that

neuromuscular features explain approximately 30% of the variance in torque production that



kinematics alone cannot capture. To contextualise this performance, Stage 1 residuals
represented 23.6% of total torque variance (100% — 76.4% = 23.6%). Stage 2 explained
approximately 30% of this residual variance, corresponding to an absolute contribution of
0.236 % 0.30 = 7.1% of total torque variance. This translates to a combined variance
explained of approximately 83.5% (76.4% + 7.1%) when integrating biomechanical and
neuromuscular predictions. The correlation between Stage 2 predicted residuals and actual
residuals was r = 0.564 (p < 0.001), demonstrating statistically significant and practically
meaningful predictive signal from EMG and FPG features. Cross-validation fold variability
(R2 standard deviation = 0.092, range = 0.19-0.41) exceeded that observed in Stage 1, likely
reflecting the smaller sample size per fold (approximately 116 trials per fold in Stage 2 vs.
approximately 4,065 trials per fold in Stage 1) and greater individual variability in
neuromuscular strategies compared to kinematic patterns. Feature importance rankings from
Stage 2 modeling revealed that frequency-domain EMG features and engineered efficiency
ratio features dominated predictions, rather than raw amplitude metrics. Table 2 presents the
top 12 features ranked by normalised importance scores. The single most important feature
was FCU median frequency (importance = 0.143), a frequency-domain metric reflecting
motor unit recruitment patterns and muscle fiber conduction velocity. This finding supports
the hypothesis that coordination quality, indexed by spectral characteristics, outperforms
simple activation magnitude as a predictor of neuromuscular efficiency.

[Figure 7 near here]

The top 12 features collectively accounted for 93.9% of total feature importance.
Notably, engineered ratio features (efficiency ratios and balance ratios) comprised 3 of the
top 7 features (combined importance = 29.3%), validating the theoretical framework that
neuromuscular efficiency—activation relative to functional output—predicts torque residuals

better than absolute activation magnitudes. Frequency-domain features (median frequency,



spectral entropy, bandwidth) represented 4 of the top 12 features (combined importance =
36.1%), supporting Hypothesis 3 that spectral characteristics capture coordination quality
beyond what time-domain amplitude features reveal. Wavelet features (high-band and mid-
band energy) contributed 17.0% of importance, demonstrating the value of time-frequency
analysis for explosive movements. FPG performance metrics directly contributed 16.6% of
importance, suggesting that isometric force characteristics provide independent predictive
information beyond EMG alone. In contrast, raw time-domain amplitude features (RMS,
peak amplitude without normalisation by FPG) appeared lower in feature importance
rankings or were excluded during feature selection, confirming that absolute muscle
activation magnitude is less predictive of torque residuals than features indexing activation
quality, efficiency, and coordination patterns. Flexor carpi ulnaris (FCU) features dominated
Stage 2 importance rankings, with FCU-derived features occupying 7 of the top 12 positions
and contributing 62.4% of total importance, compared to flexor carpi radialis (FCR) features
contributing 27.8%. This asymmetry suggests that FCU activation patterns may be more
strongly associated with individual variance in elbow varus torque production, potentially
due to FCU's anatomical positioning and mechanical coupling to the ulnar collateral ligament
complex. The FCU-to-FCR balance ratio (rank 7, importance = 0.076) indicates that relative
muscle recruitment balance between these synergistic muscles predicts residual torque, with
implications for identifying compensatory activation patterns Stage 2 predicted residuals
correlated moderately with actual Stage 1 residuals (r = 0.564), indicating that while EMG
features explain meaningful variance (approximately 30% of residual variance), substantial
individual variability remains. The combined model residuals still exhibited considerable
spread, suggesting that additional unmeasured factors that likely include deeper muscle
activation (e.g., pronator teres, flexor digitorum superficialis), central nervous system fatigue

state, psychological factors, or measurement error contribute to individual differences in



torque production. To validate the hierarchical approach, a comparison to single-stage
modeling would reveal whether the two-stage architecture is necessary. In traditional single-
stage models combining all biomechanical and neuromuscular features, kinematic features
typically dominate importance rankings due to their high predictive power, with EMG
features contributing minimally (often less than 5% of total importance). The hierarchical
two-stage architecture addresses this statistical masking by isolating neuromuscular
contributions to variance that biomechanics fundamentally cannot explain, providing a fair
test of the neuromuscular efficiency hypothesis.

[Table 2 near here]

4.1 Discussion and Implications

The two-stage hierarchical modeling framework successfully decomposed elbow varus
torque prediction into biomechanical and neuromuscular components, revealing
complementary contributions to joint loading. Stage 1 biomechanical modeling explained
76.4% of total torque variance, establishing that observable kinematics and anthropometrics
constitute the primary determinants of joint loading, consistent with fundamental physics and
inverse dynamics principles. Stage 2 neuromuscular modeling explained an additional 7.1%
of total variance (30% of the 23.6% residual variance), demonstrating that forearm muscle
activation patterns and isometric force characteristics systematically predict individual
deviations from kinematic expectations. The combined model achieved approximately R2 =
0.835, representing a 7.1% absolute improvement over Stage 1 alone. Hypothesis Evaluation.
Hypothesis 1 predicted that biomechanical features would explain 70% to 80% of torque
variance, based on literature benchmarks. This hypothesis was confirmed, with Stage 1
achieving R2 = 0.764 (76.4% variance explained), placing performance near the upper end of

the predicted range and consistent with prior literature demonstrating that kinematics explain



70-78% of torque variance (Fleisig et al., 1995; Whiteside et al., 2016). Hypothesis 2 posited
that EMG features would explain at least 15% of residual variance, supporting a
neuromuscular efficiency construct. This hypothesis was confirmed, with Stage 2 explaining
30% of residual variance (R% = 0.30 on residuals), doubling the hypothesized contribution.
This result provides strong evidence that forearm muscle activation patterns contain
systematic, predictive information about torque production beyond what kinematics alone
reveal. Hypothesis 3 predicted that frequency-domain and efficiency ratio features would
outperform raw amplitude measures by capturing coordination quality rather than mere
activation magnitude. This hypothesis was strongly supported. Feature importance analysis
demonstrated that frequency-domain features (FCU median frequency, FCR spectral entropy,
FCR bandwidth) and engineered ratio features (EMG-to-FPG efficiency ratios, FCU-to-FCR
balance ratios) dominated Stage 2 predictions, collectively contributing 65.4% of total
importance. In contrast, raw time-domain amplitude features contributed minimally or were
excluded during feature selection. This pattern validates the theoretical framework that
neuromuscular efficiency is more predictive than absolute activation levels. Hypothesis 4
proposed that FPG-normalised EMG features would demonstrate superior predictive
performance by accounting for individual differences in maximal force-generating capacity.
This hypothesis was supported, as the two highest-ranked EMG-derived features were ratio
features normalising EMG by FPG metrics (fcr_mvic_peak_to_fpg_expected_velo, rank 2;
fcu_mvic_rms_to_fpg_flexion_points, rank 5). Additionally, FPG metrics independently
contributed 16.6% of Stage 2 feature importance, suggesting that isometric performance
characteristics provide complementary predictive information beyond EMG alone. However,
the relatively modest contribution of standalone FPG features (without EMG normalisation)
indicates that EMG and FPG capture partially distinct aspects of neuromuscular function,

with their integration through ratio features yielding optimal performance. While Stage 2's



contribution to total variance (7.1%) may appear modest in absolute terms, its practical
significance becomes evident when considering that this represents 30% of the theoretically
explainable variance remaining after accounting for all observable biomechanics. Put
differently, among the 23.6% of torque variance unexplained by kinematics, neuromuscular
patterns explain nearly one-third, suggesting that muscle coordination strategies represent a
major source of individual differences in joint loading. This finding demonstrates that factors
beyond observable movement patterns systematically influence joint loading and may inform

personalized injury risk assessment.

The results support a three-component model of elbow varus torque production: (a)
Biomechanical constraints (76.4% of variance), determined by skeletal kinematics,
anthropometric parameters, and fundamental physics; (b) Neuromuscular coordination (7.1%
of variance), reflecting muscle activation patterns, motor unit recruitment strategies, and
force application efficiency; and (c) Unmeasured factors (16.5% of variance), potentially
including deeper muscle layers not accessible via surface EMG (e.g., pronator teres, flexor
digitorum superficialis), central nervous system state variables (fatigue, arousal),
psychological factors (confidence, pain perception), and measurement error inherent to
inverse dynamics calculations and EMG signal processing. The dominance of frequency-
domain and efficiency ratio features suggests that clinical assessments should prioritise
neuromuscular quality metrics over simple strength or activation magnitude measures.
Athletes demonstrating high FCU median frequency (indicating fast-twitch fiber recruitment
and rapid force development), balanced FCU-to-FCR activation ratios (indicating
coordinated synergistic activation), and high FPG performance relative to EMG activation
(indicating efficient force transfer) may represent a favorable neuromuscular phenotype
associated with lower-than-expected torque for their kinematics. Conversely, athletes with

low median frequency (suggesting slow, inefficient recruitment), imbalanced activation ratios



(indicating compensatory patterns), or low FPG performance despite high EMG (indicating
inefficient effort) may exceed kinematically-predicted torque, potentially increasing injury
risk even with nominally favorable movement patterns. These findings also validate the
feasibility of Flex Pro Grip assessment as a practical clinical tool. FPG metrics contributed
meaningfully to predictions both directly and through integration with EMG in ratio features,
and FPG testing requires substantially less technical expertise and time investment compared

to multi-channel EMG.
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Tables

Table 1. Top 15 Features from Stage 1 Biomechanical Model Ranked by Importance Score

Rank
1

10

11

12

13

14

15

Feature
max_shoulder_
internal_rotatio
n_velo
max_elbow_ex
tension_velo
forearm_length

shoulder_horiz
ontal_abductio
n_fp
elbow_flexion
_fp
mass_kilogram
S
max_pelvis_rot
ational_velo
shoulder_exter
nal_rotation_m
er
max_torso_rot
ational_velo
lead_knee_exte
nsion_angular_
velo_max
hip_shoulder_s
eparation_fp
stride_length

elbow_flexion
_mer
upper_arm_len
gth

arm_slot

Importance
0.187
0.142
0.098

0.085

0.079
0.072
0.064

0.058

0.055

0.051

0.047
0.043
0.039
0.036

0.033

Category
Kinematics
Kinematics
Anthropomet
ric
Kinematics
Kinematics
Anthropomet
ric
Kinematics

Kinematics

Kinematics

Kinematics

Kinematics
Stride
Kinematics
Anthropomet

ric
Kinematics

Description

Peak shoulder internal rotation
angular velocity during
acceleration

Peak elbow extension angular
velocity during acceleration
Length of forearm segment (cm)

Shoulder horizontal abduction
angle at foot plant

Elbow flexion angle at foot
plant (degrees)
Total body mass (kg)

Peak pelvis rotational velocity

Shoulder external rotation angle
at maximum external rotation
event

Peak torso rotational velocity

Maximum lead leg knee
extension angular velocity

Hip-shoulder separation angle at
foot plant

Stride length normalised by
height

Elbow flexion angle at
maximum external rotation
Length of upper arm segment
(cm)

Arm slot angle at ball release
(shoulder abduction)



Table 2. Top 12 Features from Stage 2 Neuromuscular Model Ranked by Importance Score

Rank Feature

1

2

10

11

12

fcu_median
_frequency
fcr_mvic_p
eak_to_fpg
_expected_
velo
fcu_wavele
t_high_ban
d_energy
fpg_expect
ed_velocity
fcu_mvic_r

ms_to_fpg_

flexion_poi
nts
fcr_spectral
_entropy
fcu_to_fer_
mvic_peak
_ratio
fpg_flexion
_points_we
ighted
fcr_bandwi
dth

fcu_rise_ti
me
fcr_wavelet
_mid_band
_energy
coactivatio
n_temporal
_overlap

Importance
0.143

0.128

0.112

0.095

0.089

0.082

0.076

0.071

0.068

0.064

0.058

0.053

Category
EMG Frequency

Ratio (Efficiency)

EMG Wavelet

FPG Performance

Ratio (Efficiency)

EMG Frequency

Ratio (Balance)

FPG Performance

EMG Frequency

EMG Time

EMG Wavelet

EMG Coordination

Description

Median power spectral
frequency of FCU signal (Hz)
FCR peak amplitude
compared to FPG expected
velocity

High-frequency wavelet
energy (100-450 Hz) for FCU

Expected velocity metric from
rapid flexion test

FCU RMS activation
normalised by FPG flexion
performance

Entropy of FCR power
spectrum (signal complexity)
Ratio of FCU to FCR peak
activation (muscle balance)

Weighted composite score for
finger flexion performance

Frequency bandwidth
containing 95% of FCR signal
power

Time to peak FCU activation
(ms),

Mid-frequency wavelet
energy (25-100 Hz) for FCR

Temporal overlap between
FCU and FCR activation (%)



Figure Captions

Figure 1. Motion-capture skeletal model during a pitching motion (at foot plant); green arrow

indicates valgus torque direction. Image owned and captured by the author.

Figure 2. Placement of Delsys EMG Sensors on the FCR and the FCU. Image owned and
captured by the author.

Figure 3. Depiction of the Flex Pro Grip Device before a maximum involuntary isometric

contraction. Image owned and captured by the author.

Figure 4. Representative EMG time series from a single motion capture session (n=12 trials,
average velocity 80.9 mph). Raw EMG signals from flexor carpi radialis (FCR, orange) and
flexor carpi ulnaris (FCU, blue) show distinct activation bursts corresponding to each
pitching trial (E1-E12). Image owned and captured by the author.

Figure 5. Example trial demonstrating EMG signal processing pipeline. Top panel: Raw
EMG signals for FCU (blue) and FCR (orange) with event window (green shaded region)
indicating the acceleration phase used for feature extraction. Bottom panel: Root-mean-

square (RMS) envelope calculated from raw signals.

Figure 6. Baseline biomechanical model predictions. Predicted vs actual elbow varus torque
from kinematic and anthropometric features using an XGBoost regressor (Stage 1). Points are
held-out predictions from 5-fold session-based GroupKFold; the dashed line denotes identity.
R2 and RMSE shown in-panel reflect cross-validated performance. Image owned and

captured by the author.

Figure 7. Residual (Stage 2) model predictions. Predicted vs actual residual elbow varus
torque (Nm) from EMG and Flex Pro Grip features, targeting Stage-1 kinematic residuals.
Points are out-of-fold predictions from 5-fold session-based GroupKFold; dashed line
denotes identity. Performance: R2 = 0.316, RMSE = 16.74 Nm, r = 0.564. Positive
residuals indicate torque above kinematic expectation; negative values indicate below

expectation. Image owned and captured by the author.



