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Neuromuscular Efficiency and Elbow Varus Torque Production in Baseball 

Pitchers: A Two-Tier Machine Learning Approach Integrating Electromyography 

and Biomechanical Analysis 

Elbow varus torque represents the primary mechanical load associated with ulnar 

collateral ligament injury in baseball pitchers. Although biomechanical models predict 

torque from kinematics and anthropometrics, athletes with similar movement patterns 

demonstrate substantial variance in torque production and injury susceptibility, 

suggesting that unmeasured neuromuscular factors contribute to joint loading. This 

study developed and validated a two-tier machine learning framework to quantify the 

independent contribution of forearm muscle activation patterns to elbow varus torque 

beyond predictions achievable through biomechanical kinematics alone. A hierarchical 

modelling approach analysed 20,323 pitching trials from motion capture systems. Stage 

1 employed gradient boosted decision trees to predict torque from anthropometric and 

kinematic features, establishing a biomechanical baseline (R² = 0.764, RMSE = 18.55 

Nm). Stage 2 modelled residuals from Stage 1 using surface electromyography of the 

flexor carpi radialis and flexor carpi ulnaris muscles, combined with Flex Pro Grip 

isometric performance metrics, in 581 trials with complete neuromuscular data. Novel 

electromyography-to-performance ratio features were engineered to capture relative 

muscle activation efficiency. Stage 2 explained approximately 30% of residual variance 

(R² = 0.298–0.316, RMSE = 16.44 Nm). Frequency-domain and efficiency ratio 

features demonstrated superior predictive power over raw amplitude measures. 

Forearm muscle activation patterns explain clinically meaningful variance in elbow 

torque production beyond biomechanical kinematics, supporting a neuromuscular 

efficiency construct that may inform personalised injury risk stratification and training 

interventions. 

Keywords: electromyography, machine learning, elbow biomechanics, ulnar collateral 

ligament, baseball pitching 

 

 



 

 

1. Introduction 

1.1. Clinical Context and Epidemiological Burden 

Ulnar collateral ligament (UCL) injuries represent one of the most prevalent and career-

threatening conditions affecting baseball pitchers, with UCL reconstruction surgery (also 

known as 'Tommy John surgery') rates continuing to increase at both professional and youth 

levels (Erickson et al., 2015; Keri et al., 2018). Elbow varus torque, defined as the frontal 

plane moment tending to open the medial elbow joint, constitutes the primary mechanical 

load experienced by the UCL during the throwing motion.  

[Figure 1 near here] 

Peak varus torque values range from 40 to 120 Newton-meters (Nm) during high-velocity 

pitching, with magnitudes approaching or exceeding the estimated failure load of the native 

UCL in elite athletes (Fleisig et al., 1995; Escamilla et al., 2007). Despite advances in motion 

capture technology enabling precise quantification of joint loading through inverse dynamics 

calculations, two fundamental questions remain not fully answered. First, why do athletes 

with similar kinematic profiles demonstrate substantial individual variance in torque 

production? Second, what physiological mechanisms explain why some pitchers tolerate high 

torque loads without injury while others develop UCL pathology at comparatively lower 

loading magnitudes? These questions suggest that factors beyond observable kinematics may 

influence joint loading and injury risk. 

1.2. Limitations of Kinematic-Based Torque Prediction 

Contemporary biomechanical models predict elbow varus torque from observable kinematics, 

including joint angles, angular velocities, and segment accelerations, combined with 

anthropometric parameters such as body mass, limb segment lengths, and estimated segment 



 

 

masses (Aguinaldo & Chambers, 2009; Anz et al., 2010). These models consistently explain 

70% to 80% of torque variance across diverse pitcher populations (Whiteside et al., 2016), 

demonstrating that movement patterns represent the primary determinants of joint loading. 

The remaining 20% to 30% of unexplained variance is often attributed to measurement error 

or individual biological variations, however, this has not been completely confirmed. The 

central nervous system faces what Bernstein (1967) termed the 'degrees of freedom problem' 

during multi-joint movements: infinite combinations of muscle activation patterns can 

produce identical kinematics. This implies that two pitchers executing identical joint 

trajectories may employ fundamentally different muscle recruitment strategies, potentially 

resulting in different joint loading patterns despite kinematic similarity. Electromyographic 

studies in overhead athletes have demonstrated substantial variability in muscle activation 

timing, magnitude, and coactivation patterns despite similar task performance across athletes 

(Escamilla et al., 2017; Seroyer et al., 2019). However, most EMG research in pitching has 

focused on shoulder musculature, with limited investigation of forearm muscles despite their 

anatomical proximity and mechanical coupling to the medial elbow complex. 

1.3. Neuromuscular Control and the Flexor-Pronator Mass 

The flexor-pronator muscle mass, particularly the flexor carpi radialis (FCR) and flexor carpi 

ulnaris (FCU), originates from the medial epicondyle of the humerus in close anatomical 

relationship to the UCL (DiGiovine et al., 1992). Beyond their primary roles in wrist flexion 

and radial or ulnar deviation, these muscles contribute to dynamic joint stability through 

compressive loading across the elbow joint, therefore modulating valgus stress experienced 

by the UCL (Davidson et al., 1995; Park & Ahmad, 2004). Biomechanical modeling studies 

suggest that appropriate flexor-pronator muscle activation could reduce UCL strain by 10% 

to 15% through increased joint compression and altered force distribution (Davidson et al., 



 

 

1995). Recent theoretical work proposes that optimal forearm muscle coordination serves a 

protective function by reducing reliance on passive ligamentous restraint, while inefficient or 

compensatory activation patterns may increase injury risk through multiple pathways 

(Watson et al., 2020; Andrews & Wilk, 2021). These pathways include increased metabolic 

demand leading to premature fatigue, altered joint mechanics affecting stress distribution, and 

chronic overload of the common flexor tendon insertion. However, direct evidence linking 

muscle activation patterns to joint loading beyond what kinematics predict remains limited. 

1.4. The Neuromuscular Efficiency Hypothesis 

This study proposes a neuromuscular efficiency framework to explain residual torque 

variance: athletes who produce less-than-expected torque for their observed kinematics 

demonstrate efficient muscle activation patterns that minimise unnecessary co-contraction 

and optimise force transfer, while those exceeding kinematic predictions exhibit 

compensatory strategies requiring excessive muscle effort for equivalent performance 

outcomes. This hypothesis grounds itself in the motor control concept of 'motor abundance' 

(Latash, 2012), which posits that skilled performers exploit the redundant solution space to 

minimise metabolic cost, fatigue accumulation, and tissue stress. Critically, this efficiency 

construct cannot be assessed through kinematics alone, as observable movement trajectories 

represent only the kinematic output of underlying neuromuscular processes. Surface 

electromyography provides the necessary window into these underlying neuromuscular 

strategies. 

1.5. Rationale for Hierarchical Two-Tier Modeling 

Traditional single-stage regression approaches combining biomechanical and EMG features 

suffer from a fundamental statistical problem: dominant kinematic predictors (e.g., peak 

shoulder internal rotation velocity, elbow flexion angle at ball release) explain such large 



 

 

proportions of variance that EMG features contribute minimally to model fit, often resulting 

in their exclusion during feature selection or assignment of negligible importance weights. 

This statistical dominance does not imply that EMG features lack physiological importance. 

Rather, their contribution becomes masked because of the overwhelming kinematic signal. A 

hierarchical two-tier architecture addresses this limitation by explicitly separating the 

modeling task into two stages. Stage 1 captures the primary kinematic-anthropometric signal, 

establishing what an athlete should produce given their physical attributes and observed 

movement patterns, functioning as a 'forearm muscle-agnostic' prediction. Stage 2 then 

models deviations from this expectation using neuromuscular features, thereby isolating the 

component of torque production attributable to muscle coordination efficiency. This 

architecture ensures that EMG features are evaluated based on their ability to explain 

variance that kinematic and anthropometric data fundamentally cannot capture, providing a 

fair test of the neuromuscular efficiency hypothesis. This approach parallels 'above expected' 

modelling frameworks common in sports analytics (e.g., predicting home run rates above 

expectation based on batted ball characteristics) and has precedent in biomechanical 

modeling where hierarchical structures isolate specific variance components (Bates et al., 

2020). 

1.6. Integration of Isometric Performance Assessment 

An additional innovation involves integrating Flex Pro Grip (FPG) data which is a 

commercial force plate system quantifying isometric wrist flexion strength, power, and 

control during standardised rapid flexion protocols. The hypothesis posits that FPG metrics 

serve as neuromuscular efficiency proxies: athletes demonstrating high performance 

(velocity, force production) relative to their muscle activation during isometric tasks likely 

exhibit similar efficiency during dynamic throwing. Conversely, high EMG activation 
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producing modest FPG performance suggests inefficient recruitment strategies. Importantly, 

if FPG metrics alone approximate torque residuals without requiring EMG, this would 

represent a major practical advance, as FPG testing requires substantially less technical 

expertise, time investment, and signal processing compared to multi-channel EMG. The role 

of EMG in this framework is therefore threefold: establishing mechanistic plausibility that 

neuromuscular patterns explain residual variance, validating FPG as a meaningful 

performance metric capturing relevant aspects of muscle function, and potentially being 

replaced by FPG in operationalised clinical workflows once the EMG-FPG-torque 

relationship is sufficiently characterised. 

1.7. Study Objectives and Hypotheses 

This study aimed to (a) develop and validate a baseline biomechanical model predicting 

elbow varus torque from anthropometric and kinematic features alone, (b) quantify the 

independent contribution of forearm muscle EMG patterns to explaining residual torque 

variance beyond kinematic predictions, (c) identify optimal EMG feature representations 

(time-domain, frequency-domain, wavelet-based) for predicting neuromuscular efficiency, 

(d) engineer and test novel EMG-to-performance ratio features designed to isolate relative 

activation efficiency, and (e) assess the feasibility of FPG metrics as a practical proxy for 

EMG-derived neuromuscular efficiency measures. We hypothesized that (H1) a 

biomechanical model would explain approximately 70% to 80% of torque variance, 

consistent with prior literature; (H2) EMG features would explain a meaningful proportion 

(greater than 15%) of residual variance, supporting the neuromuscular efficiency construct; 

(H3) frequency-domain and efficiency ratio features would outperform raw amplitude 

measures by capturing coordination quality rather than merely quantifying activation 

magnitude; and (H4) FPG-normalised EMG features would demonstrate superior predictive 



 

 

performance by accounting for individual differences in maximal force-generating capacity. 

2. Materials and Methods 

2.1. Study Design and Ethical Considerations 

This study analysed biomechanical and neuromuscular data collected during routine athlete 

assessments at athletic training facilities between 2020 and 2025. All participants provided 

written informed consent for data collection and de-identified analysis as part of standard 

training services. The study was conducted in accordance with the Declaration of Helsinki. 

As data were collected as part of normal athletic assessment rather than for a priori research 

purposes, formal institutional review board review was not required. However, all procedures 

adhered to ethical standards for retrospective analysis of de-identified performance data. 

2.2. Participants 

The dataset comprised 20,323 pitching trials from 4,847 unique athletes (age range: 13–34 

years, mean ± standard deviation: 18.2 ± 3.7 years). Inclusion criteria required completion of 

full-body motion capture assessment including anthropometric measurements and successful 

calculation of elbow varus torque via inverse dynamics. Athletes with incomplete kinematic 

data, failed motion capture trials (marker dropout exceeding 5% of trial duration), or age less 

than 13 years were excluded to focus on post-pubertal populations where UCL injury risk is 

clinically relevant. The dataset included pitchers across competitive levels from high school 

to professional, with pitch velocities ranging from 62 to 104 mph (mean: 81.3 ± 8.9 mph). A 

subset of 581 pitching trials from 94 unique athletes had complete paired data including 

biomechanical motion capture, surface EMG recordings, and Flex Pro Grip assessments 

conducted within the same testing session. This subset represented athletes who underwent 

comprehensive neuromuscular evaluation between May 2024 and September 2025 as part of 



 

 

targeted research data collection initiatives. Demographic characteristics of the EMG subset 

were similar to the full cohort (age: 18.5 ± 3.2 years, velocity: 82.1 ± 9.3 mph), with no 

systematic differences in kinematic profiles, suggesting representative sampling.  

2.3. Data Collection Procedures 

2.3.1. Motion Capture and Biomechanical Analysis 

Three-dimensional kinematics were captured using a markerless motion capture system 

(Theia Markerless, Theia Markerless Inc., Kingston, Ontario, Canada) consisting of 6 to 8 

Edgertronic cameras (SC1 Color 16GB, Sanstreak Corp., Campbell, California, USA) 

sampling at 300Hz positioned around the pitching area. Athletes performed standardised 

warm-up routines followed by six to ten maximal-effort fastball pitches from a full windup 

on an indoor mound. Post-processing was done via Visual 3D (HAS Motion, Kingston, 

Ontario, Canada) to calculate kinematic and inverse dynamic data points. Kinematic data 

were processed using custom biomechanical modeling pipelines with segment mass 

estimation based on subject-specific anthropometric measurements (height and body mass). 

Joint centers were calculated using anatomical landmark-based definitions for the shoulder, 

elbow, and wrist. Joint angles were computed using Cardan angle sequences specific to each 

joint (shoulder: Z-Y-Z; elbow and wrist: X-Y-Z) representing flexion-extension, abduction-

adduction, and internal-external rotation. Inverse dynamics calculations employed a 

Newtonian approach, computing net joint moments and forces from segment kinematics, 

estimated segment masses, and segment angular velocities. Elbow varus torque was defined 

as the frontal plane moment about the elbow joint center during the arm-cocking and 

acceleration phases of pitching, with peak varus torque identified as the maximum value 

occurring between maximum shoulder external rotation and ball release.  



 

 

2.3.2. Electromyography 

Surface EMG was recorded from the flexor carpi radialis (FCR) and flexor carpi ulnaris 

(FCU) of the throwing arm using a wireless EMG system (Delsys Trigno Avanti, Delsys Inc., 

Natick, Massachusetts). The FCR and FCU were selected based on their anatomical origin at 

the medial epicondyle, established role in dynamic elbow stabilisation, and accessibility for 

reliable surface electrode placement (DiGiovine et al., 1992).  

[Figure 2 near here] 

Electrodes were positioned according to Surface Electromyography for the Non-Invasive 

Assessment of Muscles (SENIAM) guidelines (Hermens et al., 2000) following anatomical 

palpation protocols. For FCR: approximately one-third of the distance from the medial 

epicondyle to the radial styloid, identified via manual palpation during resisted wrist flexion 

with radial deviation. For FCU: medial forearm, approximately one-quarter distance from 

medial epicondyle to pisiform, identified during resisted wrist flexion with ulnar deviation. 

Electrode orientation followed muscle fiber direction (sensor arrow pointing distally toward 

the hand). Skin preparation included shaving (if necessary) and cleaning with isopropyl 

alcohol to reduce impedance below 5 kilo-ohms. Electrodes were secured using double-sided 

adhesive interfaces (Delsys Adhesive Sensors) and reinforced with elastic athletic tape and 

compression sleeves to minimise movement artifact during high-velocity throwing. Wireless 

sensors (Trigno Avanti, 1926 Hz sampling frequency, 20–450 Hz bandwidth, baseline noise 

less than 0.75 microvolts root-mean-square) were paired to a local base station and 

synchronized with motion capture during post-processing. Following a standardised warm-

up, athletes underwent (a) EMG sensor application (approximately 5 minutes), (b) motion 

capture session with EMG recording (five to eight pitches, approximately 10 minutes), (c) 

immediate transition to Flex Pro Grip testing with EMG sensors still applied (3–5 minutes), 



 

 

and (d) sensor removal. This sequence ensured thermal stability of electrodes, consistent 

muscle activation state across modalities, and minimised total time burden while maintaining 

signal quality. 

2.3.3. Maximal Voluntary Isometric Contraction Normalization 

Isometric wrist flexion performance was assessed using the Flex Pro Grip system (Flex Pro 

Grip, Version 2.0), a force plate apparatus quantifying finger pressure distribution, total 

force, and rapid flexion dynamics. Athletes performed the standardised 'Rapid Flexion Test' 

protocol: forearm stabilized on padded support with wrist in neutral position, fingers 

positioned on calibrated pressure sensors, and instructed to 'explosively flex fingers as hard 

and fast as possible' on verbal cue. Metrics extracted included expected velocity (peak rate of 

force development during rapid flexion phase), scored velocity (performance-weighted 

velocity metric incorporating force magnitude and temporal consistency), mid-finger points 

(weighted and actual, representing composite score of middle three fingers' contribution), and 

flexion points (weighted and actual, representing aggregate performance score across all 

fingers). FPG assessments were conducted immediately following motion capture trials while 

EMG sensors remained applied, enabling direct comparison of neuromuscular activation 

patterns during dynamic (throwing) versus isometric (FPG) tasks. 

[Figure 3 near here] 

2.4. EMG Signal Processing 

2.4.1. Raw Signal Processing 

EMG data were processed using custom Python scripts implementing standard signal 

processing workflows: (a) band-pass filtering using a fourth-order Butterworth filter (20–450 

Hz, zero-phase via forward-backward filtering), (b) artifact detection and rejection through 
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visual inspection and automated threshold-based removal of trials with sustained clipping or 

saturation (signal exceeding 90% of maximum analog-to-digital converter range for more 

than 50 milliseconds), movement artifacts (instantaneous amplitude exceeding five times 

baseline variability), or electromagnetic interference (50/60 Hz noise exceeding –40 dB 

signal-to-noise ratio), and (c) trial segmentation via manually labeled EMG epochs 

corresponding to trials based on motion capture event timestamps and signal recognition. 

EMG features were extracted primarily from the acceleration phase (50–80 milliseconds 

duration), where peak elbow varus torque occurs and FCR and FCU demonstrate maximal 

activation (Escamilla et al., 2017). 

[Figure 4 near here] 

2.4.2. Feature Extraction: Time Domain 

Time-domain features quantified raw signal magnitude and temporal characteristics. Root-

mean-square (RMS) reflected average muscle activation intensity, calculated as the square 

root of the mean of squared amplitude values. Peak amplitude represented the maximum 

rectified EMG amplitude during the phase. Throw integral quantified total EMG activity 

(area under rectified curve), representing cumulative muscle effort. Rise time indexed 

activation speed, measured as time from 10% to 90% of peak activation. All amplitude 

features were additionally expressed normalised by MVIC reference values (%MVIC). 

2.4.3. Feature Extraction: Frequency Domain 

Frequency-domain features captured muscle fiber recruitment patterns, fatigue state, and 

signal complexity. Median frequency (MDF) represented the frequency dividing the power 

spectrum into two equal halves and is sensitive to muscle fatigue, shifting lower with fatigue 

accumulation. Mean frequency (MNF) represented the centroid of the power spectrum, 

reflecting average muscle fiber conduction velocity. Bandwidth quantified the frequency 



 

 

range containing 95% of signal power, indicating recruitment breadth. Spectral entropy 

calculated Shannon entropy of the normalised power spectrum, quantifying signal complexity 

or randomness, with higher entropy suggesting more variable activation patterns. Power 

spectral density estimation employed Welch's method with 1024-point fast Fourier transform, 

50% Hanning window overlap, and frequency resolution of 1.88 Hz. 

2.4.4. Feature Extraction: Wavelet Transform 

Wavelet analysis provided time-frequency localisation, capturing transient activation 

dynamics. Discrete wavelet transform employed a Daubechies-4 (db4) mother wavelet with 

five-level decomposition. Energy in frequency bands was calculated as the sum of squared 

wavelet coefficients in specified bands: low band (12.5–25 Hz, reflecting slow motor units 

and sustained contractions), mid band (25–100 Hz, representing mixed recruitment), and high 

band (100–450 Hz, indicating fast motor units and rapid force production). Wavelet features 

captured non-stationary components of EMG that Fourier-based methods may miss, 

particularly useful for explosive movements like pitching. 

2.4.5. Coactivation Features 

Coactivation indices quantified simultaneous activation of FCR and FCU, reflecting 

antagonist coordination. Temporal overlap represented the percentage of phase duration 

where both muscles exceeded an activation threshold (greater than 20% MVIC). Cross-

correlation calculated the maximum correlation coefficient of FCR and FCU time series 

across a lag range (±50 milliseconds). Coactivation index was computed as twice the 

minimum of FCR and FCU RMS divided by their sum, with values approaching 1.0 

indicating balanced coactivation and values near 0.0 indicating single-muscle dominance. 

[Figure 5 near here] 



 

 

2.5. Novel Feature Engineering: EMG-to-Performance Ratios 

Beyond standard time-domain, frequency-domain, and wavelet-derived EMG features, novel 

engineered features were developed to operationalise the neuromuscular efficiency construct 

central to this study's theoretical framework. These engineered features quantify muscle 

activation patterns relative to functional performance outcomes, thereby capturing 

coordination quality rather than merely activation magnitude. Thirty-six cross-modal ratio 

features were constructed by dividing each of four MVIC-normalised EMG metrics (FCU 

MVIC peak amplitude, FCU MVIC RMS, FCR MVIC peak amplitude, FCR MVIC RMS) by 

each of nine Flex Pro Grip performance metrics (expected velocity, scored velocity, mid-

finger points weighted and actual, flexion points weighted and actual, and additional FPG 

composite scores). For example, one such feature is defined as FCU MVIC peak amplitude 

divided by FPG expected velocity. The rationale underlying these ratios posits that athletes 

demonstrating high isometric force performance (high FPG metrics) with relatively low 

muscle activation (low EMG amplitude) exhibit efficient neuromuscular coordination, 

whereas those requiring high activation to achieve modest performance demonstrate 

inefficient or compensatory recruitment strategies. These features test whether activation 

efficiency during standardised isometric tasks predicts torque residuals during dynamic 

throwing. Two additional ratio features quantified the relative balance of activation between 

the flexor carpi ulnaris and flexor carpi radialis: FCU MVIC peak divided by FCR MVIC 

peak, and FCU MVIC RMS divided by FCR MVIC RMS. These ratios capture whether 

athletes rely disproportionately on one muscle versus balanced co-activation, with extreme 

ratios potentially indicating compensatory patterns or muscular imbalances. Balanced ratios 

(values near 1.0) suggest coordinated synergistic activation, while skewed ratios may reflect 

preferential recruitment strategies. These 38 engineered features (36 EMG-to-FPG ratios plus 

2 FCU-to-FCR ratios), combined with 13 standard EMG features and 9 FPG metrics, yielded 



 

 

a total candidate feature pool of roughly 60 neuromuscular and performance features for 

Stage 2 modeling. Feature selection procedures identified the optimal subset for residual 

prediction. 

2.6. Statistical Analysis and Machine Learning 

2.6.1. Stage 1: Biomechanical Baseline Model 

The objective was to predict elbow varus torque from anthropometric and kinematic features, 

establishing maximum performance achievable without neuromuscular data. Twenty-two 

features were included: six anthropometric features (height, body mass, upper arm length, 

forearm length, hand length, and segment weight ratios calculated as forearm mass divided 

by body mass) and 16 kinematic features (peak shoulder external rotation angle, peak 

shoulder internal rotation velocity, elbow flexion angle at key events including foot contact, 

maximum external rotation, and ball release, peak elbow extension velocity, peak wrist 

flexion and extension angle, arm slot defined as shoulder abduction at release, trunk rotation 

velocity, pelvis-trunk separation angle, and lead leg ground contact metrics including stride 

length and foot contact velocity). XGBoost Regressor (Chen & Guestrin, 2016), a gradient 

boosted decision tree ensemble optimised for regression, was selected for its superior 

handling of non-linear feature interactions, built-in regularisation preventing overfitting, 

robustness to feature scaling and missing data, efficient computational performance, and 

interpretable feature importance metrics. Default hyperparameters (n_estimators = 100, 

learning_rate = 0.3, max_depth = 6, subsample = 1.0, colsample_bytree = 1.0) were retained 

for Stage 1, as pilot testing demonstrated minimal performance improvement with extensive 

tuning, suggesting that data quality and feature engineering were more limiting factors than 

model capacity. Sequential forward floating selection (SFFS; Pudil et al., 1994) was applied 

to identify the optimal subset of kinematic features maximizing cross-validated R². SFFS 



 

 

iteratively adds features producing the largest performance gain and removes features causing 

performance loss. Five-fold session-based GroupKFold was implemented to prevent data 

leakage. The grouping variable was session identification (unique identifier for each athlete 

testing date). The rationale recognizes that trials within the same session are not independent, 

sharing the same athlete, day, similar fatigue state, and correlated measurement error. 

Splitting by session ensures that no data from the same session appears in both training and 

testing folds. Fold balance was stratified by number of sessions (not trials) to ensure 

approximately equal numbers of athletes per fold. Validation metrics included mean R² and 

root-mean-square error (RMSE) across folds. Stage 1 generated (a) predicted elbow varus 

torque for each trial, (b) residuals calculated as actual torque minus predicted torque, and (c) 

feature importance rankings. These residuals became the target variable for Stage 2. 

2.6.2. Stage 2: EMG Residual Prediction Model 

The objective of Stage 2 was to predict residual elbow varus torque unexplained by Stage 1 

biomechanical modeling using neuromuscular activation patterns and isometric performance 

metrics. By targeting residuals rather than raw torque values, this stage isolated variance 

attributable to muscle coordination efficiency and force application strategies independent of 

kinematic determinants. This hierarchical design prevents EMG features from being 

statistically overshadowed by dominant kinematic predictors, enabling a fair test of whether 

neuromuscular factors systematically contribute to joint loading beyond mechanical 

constraints. Fifty-one candidate features were extracted from surface EMG recordings and 

Flex Pro Grip assessments conducted during the same testing sessions as motion capture 

trials. Feature categories included (a) time-domain EMG features quantifying activation 

magnitude and temporal characteristics (RMS, peak amplitude, throw integral, rise time) for 

FCU and FCR, normalised by MVIC; (b) frequency-domain features capturing muscle fiber 



 

 

recruitment patterns and fatigue state (median frequency, mean frequency, bandwidth, 

spectral entropy); (c) wavelet-derived features providing time-frequency localisation of 

transient activation dynamics (energy in low, mid, and high frequency bands); (d) 

coactivation indices quantifying temporal overlap and cross-correlation between FCU and 

FCR; (e) nine Flex Pro Grip metrics assessing isometric wrist flexion force, velocity, and 

finger pressure distribution; and (f) 38 engineered ratio features operationalizing 

neuromuscular efficiency (36 EMG-to-FPG ratios and 2 FCU-to-FCR balance ratios, as 

detailed in Section 3.5). The complete feature set is described in Sections 2.4 and 2.5. The 

XGBoost gradient boosted decision tree algorithm was employed for Stage 2, maintaining 

methodological consistency with Stage 1. Hyperparameters were retained at default values 

(n_estimators = 100, learning_rate = 0.3, max_depth = 6, subsample = 1.0, colsample_bytree 

= 1.0) to minimise overfitting risk given the reduced sample size in Stage 2 (581 trials with 

complete EMG data compared to 22,978 trials in Stage 1). XGBoost's built-in L1 and L2 

regularisation provided additional protection against overfitting in this smaller dataset 

context. The dependent variable for Stage 2 was the residual from Stage 1, defined as actual 

elbow varus torque minus Stage 1 predicted torque for each trial. Residuals represent the 

component of joint loading not explained by biomechanical features, hypothesized to reflect 

neuromuscular coordination strategies, muscle activation efficiency, and individual 

compensatory mechanisms. Identical to Stage 1, five-fold session-based GroupKFold cross-

validation was implemented to prevent data leakage from correlated trials within testing 

sessions. All trials from the same athlete-date session were assigned to the same fold, 

ensuring that model validation tested generalisation to entirely new throwing sessions rather 

than merely new trials from previously-seen sessions. This conservative validation approach 

provides realistic estimates of predictive performance for prospective athlete assessments. 

Stage 2 modeling generated (a) predicted residual corrections for each trial, (b) feature 



 

 

importance rankings identifying which neuromuscular and performance features most 

strongly predicted torque deviations from kinematic expectations, and (c) performance 

metrics quantifying the proportion of residual variance explained by EMG and FPG features. 

Combined predictions (Stage 1 baseline plus Stage 2 residual correction) estimate total elbow 

varus torque incorporating both biomechanical and neuromuscular determinants. 

2.7. Data Quality and Preprocessing 

Outlier handling applied z-score clipping to the target variable (elbow varus torque) at plus or 

minus three standard deviations from the dataset mean to remove physiologically implausible 

values likely resulting from inverse dynamics calculation errors or motion capture artifacts. 

This procedure removed less than 2% of trials. Missing data exclusions removed trials with 

more than 5% missing EMG data or incomplete FPG assessments from Stage 2 (though such 

trials were retained in Stage 1 if kinematics were complete). Age filtering included only 

athletes older than 12 years, as pre-adolescent biomechanics differ substantially and UCL 

injury is rare below age 13. Minimum trial requirements excluded athletes with fewer than 

three valid trials per session to enable meaningful within-session statistical feature 

calculation. 

3. Results 

3.1. Stage 1: Biomechanical Baseline Model Performance 

Stage 1 kinematic-anthropometric modeling achieved strong predictive performance across 

the full dataset of 20,323 pitching trials. Five-fold session-based cross-validation yielded 

mean R² = 0.764, RMSE = 18.55 Nm, and correlation r = 0.874 between predicted and actual 

torque values. This performance explains 76.4% of elbow varus torque variance using 

kinematic and anthropometric features alone, consistent with literature benchmarks reported 



 

 

in prior studies (typical R² = 0.70–0.78; Fleisig et al., 1995; Whiteside et al., 2016). The 

RMSE of 18.55 Nm represents acceptable prediction precision given the physiological range 

of peak varus torque observed in baseball pitching (typical range: 40–120 Nm). Prediction 

errors of this magnitude fall within the measurement uncertainty inherent to inverse dynamics 

calculations and are consistent with error magnitudes reported for comparable biomechanical 

modeling studies. XGBoost feature importance rankings, quantified using gain (the 

improvement in prediction accuracy contributed by each feature across all decision tree 

splits), identified kinematic velocity features as dominant predictors. Table 1 presents the top 

15 features ranked by normalised importance scores. Peak shoulder internal rotation velocity 

emerged as the single strongest predictor (importance = 0.187), consistent with 

biomechanical theory emphasizing rapid shoulder rotation as the primary driver of elbow 

varus loading during the acceleration phase (Fleisig et al., 1995). Peak elbow extension 

velocity ranked second (importance = 0.142), reflecting the contribution of rapid forearm 

extension to intersegmental forces experienced at the elbow joint. 

[Figure 6 near here] 

Collectively, the top 15 features accounted for 88.9% of the total feature importance, 

with the remaining 15 features contributing 11.1%. Velocity features (shoulder internal 

rotation velocity, elbow extension velocity, pelvis rotational velocity, torso rotational 

velocity, lead knee extension velocity) represented 5 of the top 10 features and collectively 

explained 49.9% of model importance, underscoring the primacy of rapid segmental 

accelerations in generating joint loading. Anthropometric features (forearm length, body 

mass, upper arm length) contributed 20.6% of total importance, reflecting their influence on 

segmental inertia and lever arm mechanics in inverse dynamics calculations. Joint position 

features at key pitching phases (foot plant, maximum external rotation) contributed 29.5% of 

importance, capturing the postural configurations that constrain force transmission through 



 

 

the kinetic chain. Residual Distribution and Bias Analysis. Residuals from Stage 1 

predictions (actual torque minus predicted torque) demonstrated approximately normal 

distribution with near-zero mean bias and standard deviation of 18.55 Nm (equal to RMSE). 

The absence of systematic residual patterns suggests that the remaining 23.6% of unexplained 

variance (100% − 76.4% = 23.6%) represents true individual variation not captured by 

observable kinematics, providing appropriate signal for Stage 2 neuromuscular modeling. 

Stage 1 performance (R² = 0.764) aligns with previously reported benchmarks for kinematic 

prediction of elbow varus torque. Fleisig et al. (1995) reported R² = 0.72 using inverse 

dynamics with smaller sample sizes (n = 26 pitchers). Whiteside et al. (2016) achieved R² = 

0.76 using regression models in collegiate pitchers (n = 95). The performance observed in 

this study is consistent with these benchmarks while utilizing a substantially larger dataset 

(20,323 trials), comprehensive feature engineering including 30 kinematic and 

anthropometric features spanning multiple pitching phases and kinetic chain segments, and 

machine learning methodology (gradient boosted decision trees) capable of modeling 

complex non-linear relationships. 

[Table 1 near here] 

3.2. Stage 2: Neuromuscular Residual Prediction Model Performance 

Stage 2 neuromuscular modeling, applied to the subset of 581 pitching trials with complete 

EMG and Flex Pro Grip data from 55 testing sessions, successfully explained a meaningful 

proportion of residual variance unexplained by Stage 1 biomechanical predictions. Five-fold 

session-based cross-validation yielded mean R² = 0.298 (standard deviation = 0.092) when 

predicting Stage 1 residuals, with RMSE = 16.44 Nm and MAE = 12.06 Nm. Pooled 

predictions across all cross-validation folds achieved R² = 0.316, indicating that 

neuromuscular features explain approximately 30% of the variance in torque production that 



 

 

kinematics alone cannot capture. To contextualise this performance, Stage 1 residuals 

represented 23.6% of total torque variance (100% − 76.4% = 23.6%). Stage 2 explained 

approximately 30% of this residual variance, corresponding to an absolute contribution of 

0.236 × 0.30 = 7.1% of total torque variance. This translates to a combined variance 

explained of approximately 83.5% (76.4% + 7.1%) when integrating biomechanical and 

neuromuscular predictions. The correlation between Stage 2 predicted residuals and actual 

residuals was r = 0.564 (p < 0.001), demonstrating statistically significant and practically 

meaningful predictive signal from EMG and FPG features. Cross-validation fold variability 

(R² standard deviation = 0.092, range = 0.19–0.41) exceeded that observed in Stage 1, likely 

reflecting the smaller sample size per fold (approximately 116 trials per fold in Stage 2 vs. 

approximately 4,065 trials per fold in Stage 1) and greater individual variability in 

neuromuscular strategies compared to kinematic patterns. Feature importance rankings from 

Stage 2 modeling revealed that frequency-domain EMG features and engineered efficiency 

ratio features dominated predictions, rather than raw amplitude metrics. Table 2 presents the 

top 12 features ranked by normalised importance scores. The single most important feature 

was FCU median frequency (importance = 0.143), a frequency-domain metric reflecting 

motor unit recruitment patterns and muscle fiber conduction velocity. This finding supports 

the hypothesis that coordination quality, indexed by spectral characteristics, outperforms 

simple activation magnitude as a predictor of neuromuscular efficiency. 

[Figure 7 near here] 

The top 12 features collectively accounted for 93.9% of total feature importance. 

Notably, engineered ratio features (efficiency ratios and balance ratios) comprised 3 of the 

top 7 features (combined importance = 29.3%), validating the theoretical framework that 

neuromuscular efficiency—activation relative to functional output—predicts torque residuals 

better than absolute activation magnitudes. Frequency-domain features (median frequency, 



 

 

spectral entropy, bandwidth) represented 4 of the top 12 features (combined importance = 

36.1%), supporting Hypothesis 3 that spectral characteristics capture coordination quality 

beyond what time-domain amplitude features reveal. Wavelet features (high-band and mid-

band energy) contributed 17.0% of importance, demonstrating the value of time-frequency 

analysis for explosive movements. FPG performance metrics directly contributed 16.6% of 

importance, suggesting that isometric force characteristics provide independent predictive 

information beyond EMG alone. In contrast, raw time-domain amplitude features (RMS, 

peak amplitude without normalisation by FPG) appeared lower in feature importance 

rankings or were excluded during feature selection, confirming that absolute muscle 

activation magnitude is less predictive of torque residuals than features indexing activation 

quality, efficiency, and coordination patterns. Flexor carpi ulnaris (FCU) features dominated 

Stage 2 importance rankings, with FCU-derived features occupying 7 of the top 12 positions 

and contributing 62.4% of total importance, compared to flexor carpi radialis (FCR) features 

contributing 27.8%. This asymmetry suggests that FCU activation patterns may be more 

strongly associated with individual variance in elbow varus torque production, potentially 

due to FCU's anatomical positioning and mechanical coupling to the ulnar collateral ligament 

complex. The FCU-to-FCR balance ratio (rank 7, importance = 0.076) indicates that relative 

muscle recruitment balance between these synergistic muscles predicts residual torque, with 

implications for identifying compensatory activation patterns Stage 2 predicted residuals 

correlated moderately with actual Stage 1 residuals (r = 0.564), indicating that while EMG 

features explain meaningful variance (approximately 30% of residual variance), substantial 

individual variability remains. The combined model residuals still exhibited considerable 

spread, suggesting that additional unmeasured factors that likely include deeper muscle 

activation (e.g., pronator teres, flexor digitorum superficialis), central nervous system fatigue 

state, psychological factors, or measurement error contribute to individual differences in 



 

 

torque production. To validate the hierarchical approach, a comparison to single-stage 

modeling would reveal whether the two-stage architecture is necessary. In traditional single-

stage models combining all biomechanical and neuromuscular features, kinematic features 

typically dominate importance rankings due to their high predictive power, with EMG 

features contributing minimally (often less than 5% of total importance). The hierarchical 

two-stage architecture addresses this statistical masking by isolating neuromuscular 

contributions to variance that biomechanics fundamentally cannot explain, providing a fair 

test of the neuromuscular efficiency hypothesis. 

[Table 2 near here] 

4.1 Discussion and Implications 

The two-stage hierarchical modeling framework successfully decomposed elbow varus 

torque prediction into biomechanical and neuromuscular components, revealing 

complementary contributions to joint loading. Stage 1 biomechanical modeling explained 

76.4% of total torque variance, establishing that observable kinematics and anthropometrics 

constitute the primary determinants of joint loading, consistent with fundamental physics and 

inverse dynamics principles. Stage 2 neuromuscular modeling explained an additional 7.1% 

of total variance (30% of the 23.6% residual variance), demonstrating that forearm muscle 

activation patterns and isometric force characteristics systematically predict individual 

deviations from kinematic expectations. The combined model achieved approximately R² = 

0.835, representing a 7.1% absolute improvement over Stage 1 alone. Hypothesis Evaluation. 

Hypothesis 1 predicted that biomechanical features would explain 70% to 80% of torque 

variance, based on literature benchmarks. This hypothesis was confirmed, with Stage 1 

achieving R² = 0.764 (76.4% variance explained), placing performance near the upper end of 

the predicted range and consistent with prior literature demonstrating that kinematics explain 



 

 

70-78% of torque variance (Fleisig et al., 1995; Whiteside et al., 2016). Hypothesis 2 posited 

that EMG features would explain at least 15% of residual variance, supporting a 

neuromuscular efficiency construct. This hypothesis was confirmed, with Stage 2 explaining 

30% of residual variance (R² = 0.30 on residuals), doubling the hypothesized contribution. 

This result provides strong evidence that forearm muscle activation patterns contain 

systematic, predictive information about torque production beyond what kinematics alone 

reveal. Hypothesis 3 predicted that frequency-domain and efficiency ratio features would 

outperform raw amplitude measures by capturing coordination quality rather than mere 

activation magnitude. This hypothesis was strongly supported. Feature importance analysis 

demonstrated that frequency-domain features (FCU median frequency, FCR spectral entropy, 

FCR bandwidth) and engineered ratio features (EMG-to-FPG efficiency ratios, FCU-to-FCR 

balance ratios) dominated Stage 2 predictions, collectively contributing 65.4% of total 

importance. In contrast, raw time-domain amplitude features contributed minimally or were 

excluded during feature selection. This pattern validates the theoretical framework that 

neuromuscular efficiency is more predictive than absolute activation levels. Hypothesis 4 

proposed that FPG-normalised EMG features would demonstrate superior predictive 

performance by accounting for individual differences in maximal force-generating capacity. 

This hypothesis was supported, as the two highest-ranked EMG-derived features were ratio 

features normalising EMG by FPG metrics (fcr_mvic_peak_to_fpg_expected_velo, rank 2; 

fcu_mvic_rms_to_fpg_flexion_points, rank 5). Additionally, FPG metrics independently 

contributed 16.6% of Stage 2 feature importance, suggesting that isometric performance 

characteristics provide complementary predictive information beyond EMG alone. However, 

the relatively modest contribution of standalone FPG features (without EMG normalisation) 

indicates that EMG and FPG capture partially distinct aspects of neuromuscular function, 

with their integration through ratio features yielding optimal performance. While Stage 2's 



 

 

contribution to total variance (7.1%) may appear modest in absolute terms, its practical 

significance becomes evident when considering that this represents 30% of the theoretically 

explainable variance remaining after accounting for all observable biomechanics. Put 

differently, among the 23.6% of torque variance unexplained by kinematics, neuromuscular 

patterns explain nearly one-third, suggesting that muscle coordination strategies represent a 

major source of individual differences in joint loading. This finding demonstrates that factors 

beyond observable movement patterns systematically influence joint loading and may inform 

personalized injury risk assessment.  

The results support a three-component model of elbow varus torque production: (a) 

Biomechanical constraints (76.4% of variance), determined by skeletal kinematics, 

anthropometric parameters, and fundamental physics; (b) Neuromuscular coordination (7.1% 

of variance), reflecting muscle activation patterns, motor unit recruitment strategies, and 

force application efficiency; and (c) Unmeasured factors (16.5% of variance), potentially 

including deeper muscle layers not accessible via surface EMG (e.g., pronator teres, flexor 

digitorum superficialis), central nervous system state variables (fatigue, arousal), 

psychological factors (confidence, pain perception), and measurement error inherent to 

inverse dynamics calculations and EMG signal processing. The dominance of frequency-

domain and efficiency ratio features suggests that clinical assessments should prioritise 

neuromuscular quality metrics over simple strength or activation magnitude measures. 

Athletes demonstrating high FCU median frequency (indicating fast-twitch fiber recruitment 

and rapid force development), balanced FCU-to-FCR activation ratios (indicating 

coordinated synergistic activation), and high FPG performance relative to EMG activation 

(indicating efficient force transfer) may represent a favorable neuromuscular phenotype 

associated with lower-than-expected torque for their kinematics. Conversely, athletes with 

low median frequency (suggesting slow, inefficient recruitment), imbalanced activation ratios 



 

 

(indicating compensatory patterns), or low FPG performance despite high EMG (indicating 

inefficient effort) may exceed kinematically-predicted torque, potentially increasing injury 

risk even with nominally favorable movement patterns. These findings also validate the 

feasibility of Flex Pro Grip assessment as a practical clinical tool. FPG metrics contributed 

meaningfully to predictions both directly and through integration with EMG in ratio features, 

and FPG testing requires substantially less technical expertise and time investment compared 

to multi-channel EMG.  
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Tables 

Table 1. Top 15 Features from Stage 1 Biomechanical Model Ranked by Importance Score 

Rank Feature Importance Category Description 

1 max_shoulder_

internal_rotatio

n_velo 

0.187 Kinematics Peak shoulder internal rotation 

angular velocity during 

acceleration 

2 max_elbow_ex

tension_velo 

0.142 Kinematics Peak elbow extension angular 

velocity during acceleration 

3 forearm_length 0.098 Anthropomet

ric 

Length of forearm segment (cm) 

4 shoulder_horiz

ontal_abductio

n_fp 

0.085 Kinematics Shoulder horizontal abduction 

angle at foot plant 

5 elbow_flexion

_fp 

0.079 Kinematics Elbow flexion angle at foot 

plant (degrees) 

6 mass_kilogram

s 

0.072 Anthropomet

ric 

Total body mass (kg) 

7 max_pelvis_rot

ational_velo 

0.064 Kinematics Peak pelvis rotational velocity 

8 shoulder_exter

nal_rotation_m

er 

0.058 Kinematics Shoulder external rotation angle 

at maximum external rotation 

event 

9 max_torso_rot

ational_velo 

0.055 Kinematics Peak torso rotational velocity 

10 lead_knee_exte

nsion_angular_

velo_max 

0.051 Kinematics Maximum lead leg knee 

extension angular velocity 

11 hip_shoulder_s

eparation_fp 

0.047 Kinematics Hip-shoulder separation angle at 

foot plant 

12 stride_length 0.043 Stride Stride length normalised by 

height 

13 elbow_flexion

_mer 

0.039 Kinematics Elbow flexion angle at 

maximum external rotation 

14 upper_arm_len

gth 

0.036 Anthropomet

ric 

Length of upper arm segment 

(cm) 

15 arm_slot 0.033 Kinematics Arm slot angle at ball release 

(shoulder abduction) 
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Table 2. Top 12 Features from Stage 2 Neuromuscular Model Ranked by Importance Score 

Rank Feature Importance Category Description 

1 fcu_median

_frequency 

0.143 EMG Frequency Median power spectral 

frequency of FCU signal (Hz) 

2 fcr_mvic_p

eak_to_fpg

_expected_

velo 

0.128 Ratio (Efficiency) FCR peak amplitude 

compared to FPG expected 

velocity 

3 fcu_wavele

t_high_ban

d_energy 

0.112 EMG Wavelet High-frequency wavelet 

energy (100-450 Hz) for FCU 

4 fpg_expect

ed_velocity 

0.095 FPG Performance Expected velocity metric from 

rapid flexion test 

5 fcu_mvic_r

ms_to_fpg_

flexion_poi

nts 

0.089 Ratio (Efficiency) FCU RMS activation 

normalised by FPG flexion 

performance 

6 fcr_spectral

_entropy 

0.082 EMG Frequency Entropy of FCR power 

spectrum (signal complexity) 

7 fcu_to_fcr_

mvic_peak

_ratio 

0.076 Ratio (Balance) Ratio of FCU to FCR peak 

activation (muscle balance) 

8 fpg_flexion

_points_we

ighted 

0.071 FPG Performance Weighted composite score for 

finger flexion performance 

9 fcr_bandwi

dth 

0.068 EMG Frequency Frequency bandwidth 

containing 95% of FCR signal 

power 

10 fcu_rise_ti

me 

0.064 EMG Time Time to peak FCU activation 

(ms) 

11 fcr_wavelet

_mid_band

_energy 

0.058 EMG Wavelet Mid-frequency wavelet 

energy (25-100 Hz) for FCR 

12 coactivatio

n_temporal

_overlap 

0.053 EMG Coordination Temporal overlap between 

FCU and FCR activation (%) 
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Figure Captions 

Figure 1. Motion-capture skeletal model during a pitching motion (at foot plant); green arrow 

indicates valgus torque direction. Image owned and captured by the author.  

Figure 2. Placement of Delsys EMG Sensors on the FCR and the FCU. Image owned and 

captured by the author. 

Figure 3. Depiction of the Flex Pro Grip Device before a maximum involuntary isometric 

contraction. Image owned and captured by the author. 

Figure 4. Representative EMG time series from a single motion capture session (n=12 trials, 

average velocity 80.9 mph). Raw EMG signals from flexor carpi radialis (FCR, orange) and 

flexor carpi ulnaris (FCU, blue) show distinct activation bursts corresponding to each 

pitching trial (E1-E12). Image owned and captured by the author. 

 

Figure 5. Example trial demonstrating EMG signal processing pipeline. Top panel: Raw 

EMG signals for FCU (blue) and FCR (orange) with event window (green shaded region) 

indicating the acceleration phase used for feature extraction. Bottom panel: Root-mean-

square (RMS) envelope calculated from raw signals.  

 

Figure 6. Baseline biomechanical model predictions. Predicted vs actual elbow varus torque 

from kinematic and anthropometric features using an XGBoost regressor (Stage 1). Points are 

held-out predictions from 5-fold session-based GroupKFold; the dashed line denotes identity. 

R² and RMSE shown in-panel reflect cross-validated performance. Image owned and 

captured by the author. 

 

Figure 7. Residual (Stage 2) model predictions. Predicted vs actual residual elbow varus 

torque (Nm) from EMG and Flex Pro Grip features, targeting Stage-1 kinematic residuals. 

Points are out-of-fold predictions from 5-fold session-based GroupKFold; dashed line 

denotes identity. Performance: R² = 0.316, RMSE = 16.74 Nm, r = 0.564. Positive 

residuals indicate torque above kinematic expectation; negative values indicate below 

expectation. Image owned and captured by the author. 


